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Preliminaries: Definitions and Notation
Seek optimality conditions for (local) minimizer ...

Definition (Nonlinear Optimization Problem)

minimize  f(x)

subject to  ¢i(x) =0, ief
/,'SC,'(X)SU,’ el
i <xj < uj j=1...,n

where

e f(x) and c¢j(x) twice continuously differentiable.
o & indexes equality, Z indexes inequality constraints
@ Bounds /;, uj, li, u; can be finite or infinite

Also referred to as nonlinear program (NLP).

Often, have additional structure, that can be exploited by solver
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Preliminaries: Definitions and Notation

Simplify notation ... other NLPs can be expressed like this.
minimize  f(x)

subject to ¢i(x)=0 €&
c(x)>0 el

Notation J

cs(x) =0, cz(x) > 0 denotes equality, inequality constraints.

For £ ={1,...,m} ce(x)=



N
Preliminaries: Definitions and Notation
Nonlinear optimization problem

minimize  f(x)
subjectto  c¢i(x)=0 i€
c(x)>0 JieZ.

Definition (Feasible Set)

Feasible set of NLP is set of x that satisfy all constraints

JF = {X|Cg(X) =0, and cz(x) > 0}

Definition (Local and Global Minimizers)
@ x* € F is global minimizer, iff f(x*) < f(x) for all x € F.

e x* € F is local minimizer, iff there exists neighborhood N (x*)
of x* such that f(x*) < f(x) for all x € F UN(x*).




Local versus Global Minimizers

Notation.
Gradient of f(x) is g(x) = Vf(x), Jacobian of ¢(x) is
A(x) = Ve(x).

Remark (Limitations of Optimality Conditions)
e Optimality conditions only provide local optimality.

@ Limited to smooth finite-dimensional problems.
. extend to nonsmooth problems using subdifferential Of (x)

Remark (Importance of Optimality Conditions)
@ Guarantee that candidate solution is local optimum

@ Indicate when point is not optimal (necessary conditions)

@ Guide development of optimization methods
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First-Order Conditions

Theorem (Unconstrained First-Order Conditions)

x* unconstrained local minimizer = g* = 0.

State this condition equivalently as
gf=0 & s'gr=0,Vs < {s]sTg*<0}:®,

i.e. there are no strict descend directions at x*

Generalize these conditions
@ Must classify feasible directions

@ Derive easy-to-check conditions for
{s |sTg* <0, Vs feasible directions} =0,

i.e. there exist no feasible descend directions.
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Concept of Feasible Directions

Feasible directions play central role in optimality ...

Infeasible
Djrects

Distinguish two cases:

Directs @ Inequality constraints.

. equality constraints easier

Feasible
Set

Feasible @ Equality constraints only.
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.
Equality Constrained Nonlinear Programs

Consider equality constraints only:

minimize f(x)
subject to cg(x) = 0.

Take infinitesimal step § from x*, look at Taylor series expansion:
Gi(x" +6) = ¢i(x*) + 87 af + o(||6]]) = 67 aF + o(||4]]),
because cj(x*) = 0, where a} = V¢;(x*)

Recall: a = o(h) means 2 —0ash—0

Sufficient Condition for Feasible x* 4 § J

6Tal +o(]|0]) =0 = sTaf=0 feasible directions
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.
Graphical Interpretation of Feasible Directions

Feasible directions, s such that s™a? = 0 are tangent directions

Feasible directions at two different points.
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.
Graphical Interpretation of Feasible Directions

Feasible directions, s such that sTaT = 0 are tangent directions

How to derive feasible directions:

2X1
Vei(x) =
F={x|x§ -x<0,x+x <1} 16) (—1)
2
Ve (x) = (22)

At x = (0;1) get s = (£1;0):

(+1;0)7(0;2) =0

At x = (0.7861;0.6180) get
two directions

—0.5367 —0.6180
—0.8438 0.7861
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Regularity Assumptions

To derive stationarity conditions, need regularity assumption:
“linearized feasible set”, looks like nonlinear feasible set

Assumption (Linear Independence of Constraint Normals)
ai = Vci(x*), fori =1,...,me, are linearly independent. J

An alternative assumption is that all constraints are linear
@ Any linearization of a linear constraint is perfect approx.

@ Hence, do not need regularity assumptions for LPs and QPs.
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Necessary Condition for Equality Constraints

minimize f(x) subject to cg(x) =0

Necessary condition: under linear independence assumption:
x* is a local minimizer = {s |sTg*<0,sTaf=0,Vie 5} =

. very difficult to check

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x* is local minimizer, then
the following conditions are equivalent:

Q {s|s’g*<0,sTay=0,Vie&} =0
@ There exist Lagrange multipliers, y;, for i € £ such that

g =Y ylat=Ay.
ie€
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Graphic Interpretation of FO Conditions

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x* is local minimizer, then
the following conditions are equivalent:

Q {s|s"g*<0,sTayr=0,Vie&} =0
@ There exist Lagrange multipliers, y, for i € £ such that

g => yia=

i€e€

@ Can write g* as linear combination of constraint gradients, a.
@ Linear-independence Assumption implies rank(A*) = me
i.e. A* has full rank = generalized inverse, AT, exists

~1
v = A" g% where AT = (A*TA*> A

unique multipliers, y*, also solve min [|A*y — g*||3
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Graphic Interpretation of FO Conditions

contours f(x)
a 16 /34



Method of Lagrange Multipliers
Restate conditions in Lemma as system of equations in (x,y):

g(x) = A(x) y first-order condition
c(x)=0 feasibility.

Define Lagrangian function, £(x,y) := f(x) — y " c(x)

Method of Lagrange Multipliers
First-order optimality conditions equivalent to

V«L(x,y)=0, and V,L(x,y)=0.

Can apply Newton's method to nonlinear system in (x, y)

Finding stationary points < finding stationary point of Lagrangian
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Effect of Perturbations: Sensitivity Analysis

Express effect of perturbation to constraint, ¢j(x) = €; on optimum
Let x(¢) and y(e€) denote optimal values after perturbation

F(x(€)) = Lx(e), y(€)) = f(x(€) = y(€) " (c(x) —¢)

Chain rule implies

df dL  oxT oy’ L
de;  de; O VL + O¢; vy‘c_}_@ie,-
Observe, that V,L(x,y) =0 and V,L(x,y) =0, hence
df

86,’ .yl de, yl

Sensitivity Interpretation of Multipliers

Multiplier, y;, gives rate of change in objective to perturbation
right-hand-side of constraint ;.
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Inequality Constrained Nonlinear Programs

Now consider both equality and inequality constraints
minimize  f(x)
subjectto ¢i(x)=0 €&
C,'(X) >0 el

only need to consider active constraints

A= Ax*) ={ie EUT | ci(x*) =0} active set.

. includes all equality constraints

Again, looking for feasible directions ... now for inequalities.
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Inequality Constrained Nonlinear Programs
Now consider both equality and inequality constraints

minimize  f(x)
subject to  ¢i(x) = €&
ci(x) 2 iel.
Let 0 be small incremental step for active inequality, i € Z N A*:
G(x* 4 6) = c(x*) +7ar + o(||8])) = 67 aF + o(||]))-
Now require step to remain feasible only wrt one side:

G(x*+6)>0 < §"ar +o(||d])

Hence, § lies in direction s:

feasible directions sTal >0,VieInA*, sTal=0,Viek.

. again need a regularity assumption ...
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Regularity Assumption for Inequality Constraints

Need regularity assumption to ensure that linearized analysis
captures nonlinear geometry

Assumption (Linear Independence Constraint Qualification)

The linear-independence constraint qualification (LICQ) holds at x*
for the NLP, iff af = Vcij(x*), for i € A*, are linearly independent.

V.

The next assumption is slightly weaker, and implies the LICQ.

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ)
holds at x* for the NLP, iff af = V¢;(x*), for i € £, are linearly
independent, and there exists s # 0 such that

sTaf >0, VieInA".
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Why We Need Regularity Assumptions

Consider the NLP
minimize xi
X
subject to xp < x3
X2 > 0

Has optimum at cusp

(0

... but constraints violate MFCQ
= bogus “feasible” direction

()

MFCQ fails at cusp, x =0
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Regularity Assumption for Inequality Constraints

minimize  f(x)
subject to  ¢i(x) = €&
ci(x) Z iel.

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ)
holds at x* for the NLP, iff af = Vcj(x*), for i € £, are linearly
independent, and there exists s # 0 such that

Tar >0, VieInA*.

MFCQ is stronger than needed:
{s]sTg* <0,sTal=0,Vie& sTal >0, Vie IOA*} =0

. but this condition really difficult to check.
S 23/34



.
Necessary Condition for Nonlinear Optimization

Lemma (First-Order Conditions for Optimality)

Assume that LICQ or MFCQ hold, and that x* is local minimizer,
then the following two conditions are equivalent:

© There exist no feasible descend direction:
{s|sTg* <0,sTaf=0,Vie& s"al >0, Vi GIOA*} =0
@ There exist so-called Lagrange multipliers, y*, for i € A*:

g = Z y‘ai = A'y wherey’ >0, Vie INnA".
icA*
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.
Necessary Condition for Nonlinear Optimization

g = Z yiai = A"y wherey >0, VieZnA".
i€ A*

Remark (Towards an Algorithms for NLP)

Assume at non-stationary point with

e Multiplier y; < 0 for some q € T
e.g. least-squares multiplier

@ Have direction s with sTaq =1

Then reduce objective by step in this feasible direction s.

Basis for active-set methods for linear and quadratic programming!
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The Karush-Kuhn-Tucker Conditions

minimize  f(x)
subject to  ¢i(x)
ci(

ieé&

Theorem (Karush-Kuhn-Tucker (KKT) Conditions)

X)Z iel.

x* local minimizer of NLP and assume LICQ or MFCQ hold at x*.

Then there exist Lagrange multipliers, y* such that

Vi L(x*,y*)=0 first order condition
ce(x*)=0 feasibility
cr(x*) >0 feasibility
yr >0 dual feasibility
yici(x*)=0 complementary slackness.

26
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Interpretation of KKT Conditions

Remark (Stationarity Conditions and Algorithms)
Take standard NLP & linearize about stationary point, x*, then:
KKT conditions are the FO conditions of linearized problem:
minZnize f(x*) +dTVF(x*)
subject to ¢i(x*) +dTVci(x*) =0, i € &
ci(x*) +d"Vei(x*) >0, i €T,

@ Motivates algorithms such as SLP, SQP, SLQP, SQQP, ...

@ Extends FO conditions to structured NLP, e.g. MPECs, ...
.. and hence defines new structured algorithmic approaches
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Second-Order Conditions

KKT conditions are first-order necessary conditions.

Extend second-order from the unconstrained case

Goal J

Remark
Important to include second-order effects from constraints
o Can replace objective:

minimize f(x) < minimize 7 subject ton > f(x)
X X7n

o Need to consider V?c;(x), not just V2f(x).

Again convenient to distinguish equality and inequality constraints.

29 /34



Second-Order Conditions for Equality Constraints

Let x* is KKT point, and a; for i € £ linearly independent
Let § be an incremental step along feasible direction, s.

f(x*+9)=L(x*+0,y%)
= L(x*,y*) + 0T VL(x*, y*) + 367 W*5 + o(]|5]1%)
= f(x*) + 36T W*5 + o(]|6]?),

where Hessian of Lagrangian is:

W* = V2L(x",y*) = V2F(x*) + ) yiV2c(x")
ie&

Optimality of x* implies
sTW*s>0, Vs:s'af =0.

i.e. Lagrangian has nonnegative curvature for all feasible directions
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Second-Order Conditions for Equality Constraints

Proposition (Second-Order Necessary Condition)

x* local minimizer, and if constraint qualification holds, then

sTV2L(x*,y*)s >0Vs:s'al =0.

Can also state sufficient condition for local minimizer.

Proposition (Second-Order Sufficient Condition)
IfV L(x*,y*) =0, if c(x*) =0, and if

sTV2L(x*,y")s >0, Vs #0:s af =0,

then x* is a local minimizer.

Note: J gap between necessary and sufficient conditions.
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Second-Order Conditions for Inequality Constraints

To derive second-order conditions consider active constraints, A*.
= NLP equivalent to equality NLP, if y* >0, Vi € Z N A*,

Simplifying Assumption
Assume strict complementarity: y* >0, Vi € Z N A%,

Proposition (Second-Order Sufficient Condition)

If Vi L(x*,y*) =0, if c(x*) =0, if strict complementarity holds,
ie. y*>0,VieINA*, and if

sTV2L(x*,y*)s >0, Vs #0:s"al =0, Vi € A",

then it follows that x* is a local minimizer.
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Second-Order Conditions for Inequality Constraints

More rigorous results without strict complementarity possible ...
. needs Hessian V2L positive definite over cone impractical

Check sufficient conditions by finding inertia of KKT matrix,
Ww* A*
AT o |

Theorem

If inertia of KKT matrix is [n — m,0, m], then second order
conditions are satisfied, where m = | A*|.

KKT matrix with inertia is [n — m, 0, m] is second-order sufficient
Matrix inertia: triple of positive, zero, and negative eigenvalues.

o 33/34



Summary and Take-Aways

Derived Optimality Conditions for NLPs

@ Intuitive geometric interpretation

e Motivate algorithmic approaches (soon)

c(x)=0

contours f(x)

Optimality Conditions Require Regularity
o Not easy to check a priori (LICQ is OK)
@ What happens if regularity does not hold?

@ Algorithms often detect lack of regularity
... fail “gracefully” ...
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